Barouni, Foued

foued.barouni.1@ulaval.ca



Cycle : 3e
Directeur : Bernard Moulin

Sujet : Using spatiotemporal patterns to qualitatively represent and manage dynamic situations of interest : a cognitive and integrative approach


Résumé :

Les situations spatio-temporelles dynamiques sont des situations qui évoluent dans l’espace et dans le temps. L’être humain peut identifier des configurations de situations dans son environnement et les utilise pour prendre des décisions. Ces configurations de situations peuvent aussi être appelées « situations d’intérêt » ou encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par des systèmes d’acquisition de données souvent présents dans diverses industries grâce aux récents développements technologiques et qui génèrent des bases de données de plus en plus volumineuses. On relève un problème important dans la littérature lié au fait que les formalismes de représentation utilisés sont souvent incapables de représenter des phénomènes spatiotemporels dynamiques et complexes qui reflètent la réalité. De plus, ils ne prennent pas en considération l’appréhension cognitive (modèle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent difficile la mise en œuvre de tels modèles par des agents logiciels. Dans cette thèse, nous proposons un nouveau modèle de représentation des situations d’intérêt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise les graphes conceptuels pour offrir un aspect qualitatif au modèle de représentation. Le modèle se base sur les notions d’événement et d’état pour représenter des phénomènes spatiotemporels dynamiques. Il intègre la notion de contexte pour permettre aux agents logiciels de raisonner avec les instances de patrons détectés. Nous proposons aussi un outil de génération automatisée des relations qualitatives de proximité spatiale en utilisant un classificateur flou. Finalement, nous proposons une plateforme de gestion des patrons spatiotemporels pour faciliter l’intégration de notre modèle dans des applications industrielles réelles. Ainsi, les contributions principales de notre travail sont : Un formalisme de représentation qualitative des situations spatiotemporelles dynamiques en utilisant des graphes conceptuels. ; Une approche cognitive pour la définition des patrons spatio-temporels basée sur l’intégration de l’information contextuelle. ; Un outil de génération automatique des relations spatiales qualitatives de proximité basé sur les classificateurs neuronaux flous. ; Une plateforme de gestion et de détection des patrons spatiotemporels basée sur l’extension d’un moteur de traitement des événements complexes (Complex Event Processing).

Publications :
  • Barouni F., Moulin B., 2012, An Extended Complex Event Processing Engine to Qualitatively Determine Spatiotemporal Patterns, GSDI International Conference, 2012-05-08, Québec, Canada