Diallo, Belko Abdoul Aziz

belko-abdoul-aziz.diallo.1@ulaval.ca



Cycle : 3e
Directeur : Thierry Badard
Codirecteur : Frédéric Hubert

Sujet : Aide à la prise de décision en situation de mobilité : Proposition d’une solution mobile d’intelligence d’affaire géospatiale (GeoBI) sémantiquement augmentée et sensible au contexte mobile du décideur


Résumé :

Le développement rapide de l’informatique mobile a donné lieu à l’apparition et à la popularisation de téléphones mobiles dits intelligents ou smart phones (ex.: iPhone, HTC, etc.) dont le nombre et les performances sans cesse croissantes en font de potentielles plateformes alternatives aux ordinateurs de bureau.
Cette avancée technologique a contribué à l’émergence d’une nouvelle catégorie d’acteurs du monde des affaires n’ayant pas de bureau fixe, travaillant directement sur le terrain dans divers endroits (à la maison, en voiture, en avion, chez le client, à l’hôtel, chez le fournisseur, etc.) à l’aide d’équipements mobiles ou nomades, et se déplaçant partout où les affaires l’exigent pour assurer la compétitivité de leurs organisations: ce sont les travailleurs mobiles parmi lesquels on retrouve un grand nombre de décideurs.

Étant donné ce monde des affaires de plus en plus compétitif où les gens d’affaires sont de plus en plus mobiles et confrontés à la nécessité de prendre des décisions de plus en plus rapides et efficaces basées sur des analyses pertinentes, l’aide à la prise de décision en mobilité s’avère indispensable.

Pour leur apporter une telle aide, la présente thèse de doctorat propose d’aller au-delà du simple accès à distance à une plateforme d’intelligence d’affaire géospatiale ou non géospatiale (GeoBI/BI) comme le proposent les solutions actuelles. Elle propose de prendre également en considération la localisation et le contexte de travail du décideur/analyste mobile dans l’aide à la décision, et d’enrichir sémantiquement les données d’affaire.
Afin de proposer une telle solution de GeoBI mobile sémantiquement augmentée et sensible au contexte mobile du décideur, la présente thèse s’est attelée d’une part à identifier, modéliser et enrichir les informations contextuelles pertinentes pour supporter un raisonnement GeoBI basé sur le contexte, et s’est évertuée d’autre part à proposer une solution d’augmentation sémantique des données d’affaire GeoBI qui permettrait de mettre en exergue les [cor]relations sémantiques pouvant exister entre les données.

Un prototype mettant en œuvre une application mobile sensible au contexte et une architecture orientée services web a été développé et testé comme preuve de concept. Les tests ont montré que celui-ci permettait par exemple de soumettre et de visualiser le résultat de requêtes contextuelles du type : « dans un rayon de 5 km autour de ma position actuelle, quelles sont les compagnies partenaires ayant des relations de concurrence avec nos actionnaires et dont le chiffre d’affaires des deux années précédentes dépasse chacune le million ; les relations de partenariat/actionnariat pouvant être transitives, symétriques ou avoir la même sémantique ? »

Publications :